Micron-scale robots (ubots) have recently shown great promise for emerging medical applications, and accurate control of ubots is a critical next step to deploying them in real systems. In this work, we develop the idea of a nonlinear mismatch controller to compensate for the mismatch between the disturbed unicycle model of a rolling ubot and trajectory data collected during an experiment. We exploit the differential flatness property of the rolling ubot model to generate a mapping from the desired state trajectory to nominal control actions. Due to model mismatch and parameter estimation error, the nominal control actions will not exactly reproduce the desired state trajectory. We employ a Gaussian Process (GP) to learn the model mismatch as a function of the desired control actions, and correct the nominal control actions using a least-squares optimization. We demonstrate the performance of our online learning algorithm in simulation, where we show that the model mismatch makes some desired states unreachable. Finally, we validate our approach in an experiment and show that the error metrics are reduced by up to 40%.
translated by 谷歌翻译
As robotic systems continue to address emerging issues in areas such as logistics, mobility, manufacturing, and disaster response, it is increasingly important to rapidly generate safe and energy-efficient trajectories. In this article, we present a new approach to plan energy-optimal trajectories through cluttered environments containing polygonal obstacles. In particular, we develop a method to quickly generate optimal trajectories for a double-integrator system, and we show that optimal path planning reduces to an integer program. To find an efficient solution, we present a distance-informed prefix search to efficiently generate optimal trajectories for a large class of environments. We demonstrate that our approach, while matching the performance of RRT* and Probabilistic Road Maps in terms of path length, outperforms both in terms of energy cost and computational time by up to an order of magnitude. We also demonstrate that our approach yields implementable trajectories in an experiment with a Crazyflie quadrotor.
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
对于宏观尺度的简单机器人平台,对群系统的控制相对良好地理解。然而,关于微型摩托管可以实现类似的结果,仍有几个未解决的问题。本文提出了一种基于全球磁场下磁化自推进Janus Microorobots的动态模型的建模框架。我们通过实验验证我们的模型,并提供了可以旨在准确描述微机器的行为的方法,同时建模他们的同时控制。该模型可以广泛地推广到低雷诺数环境中的其他微生物平台。
translated by 谷歌翻译
分列已被利用作为用于最小化能量消耗的车辆方法。在本文中,我们提出了一个限制驱动的最佳控制框架,从而产生了在开放式运输系统中运行的连接和自动车辆的紧急排行行为。我们的方法将最近的洞察于约束驱动的最佳控制与高速公路设置中车辆之间的物理空气动力学相互作用相结合。结果是一系列描述,当排中是适当的策略时,以及产生紧急排行行为的描述性最佳控制法。最后,我们在模拟中展示了这些属性。
translated by 谷歌翻译
当我们转向越来越复杂的网络物理系统(CPS)时,需要新方法来实时计划有效的状态轨迹。在本文中,我们提出了一种方法来显着降低对一类CPS解决最佳控制问题的复杂性。我们利用差分平稳度的性质来简化Euler-拉格朗日方程,这简化消除了一般情况下出现的数值不稳定性。我们还提出了一种明确的微分方程,描述了最佳状态轨迹的演变,我们扩展了我们的结果,以考虑无约束和受限制的情况。此外,我们通过在具有障碍物的环境中生成双积分代理的最佳轨迹来证明我们的方法的性能。在仿真中,与现有的基于焊接的最佳控制库相比,我们的方法显示了30%的成本降低,并且计算速度提高了几乎3倍。
translated by 谷歌翻译
在本文中,我们介绍了四种突出的恶意软件检测工具的科学评估,以帮助组织提出两个主要问题:基于ML的工具在多大程度上对以前和从未见过的文件进行了准确的分类?是否值得购买网络级恶意软件检测器?为了识别弱点,我们针对各种文件类型的总计3,536个文件(2,554或72 \%恶意,982或28 \%良性)测试了每个工具,包括数百个恶意零日,polyglots和apt-style-style style文件,在多个协议上交付。我们介绍了有关检测时间和准确性的统计结果,请考虑互补分析(一起使用多个工具),并提供了近期成本效益评估程序的两种新颖应用。尽管基于ML的工具在检测零日文件和可执行文件方面更有效,但基于签名的工具仍然是总体上更好的选择。两种基于网络的工具都与任何一种主机工具配对时都可以进行大量(模拟)节省,但两者在HTTP或SMTP以外的协议上都显示出较差的检测率。我们的结果表明,所有四个工具都具有几乎完美的精度但令人震惊的召回率,尤其是在可执行文件和Office文件以外的文件类型上 - 未检测到37%的恶意软件,包括所有Polyglot文件。给出了研究人员的优先事项,并给出了最终用户的外卖。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
This paper proposes a novel observer-based controller for Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) designed to directly receive measurements from a Vision-Aided Inertial Navigation System (VA-INS) and produce the required thrust and rotational torque inputs. The VA-INS is composed of a vision unit (monocular or stereo camera) and a typical low-cost 6-axis Inertial Measurement Unit (IMU) equipped with an accelerometer and a gyroscope. A major benefit of this approach is its applicability for environments where the Global Positioning System (GPS) is inaccessible. The proposed VTOL-UAV observer utilizes IMU and feature measurements to accurately estimate attitude (orientation), gyroscope bias, position, and linear velocity. Ability to use VA-INS measurements directly makes the proposed observer design more computationally efficient as it obviates the need for attitude and position reconstruction. Once the motion components are estimated, the observer-based controller is used to control the VTOL-UAV attitude, angular velocity, position, and linear velocity guiding the vehicle along the desired trajectory in six degrees of freedom (6 DoF). The closed-loop estimation and the control errors of the observer-based controller are proven to be exponentially stable starting from almost any initial condition. To achieve global and unique VTOL-UAV representation in 6 DoF, the proposed approach is posed on the Lie Group and the design in unit-quaternion is presented. Although the proposed approach is described in a continuous form, the discrete version is provided and tested. Keywords: Vision-aided inertial navigation system, unmanned aerial vehicle, vertical take-off and landing, stochastic, noise, Robotics, control systems, air mobility, observer-based controller algorithm, landmark measurement, exponential stability.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译